Sammamish Plateau Water and Sewer District

2018 Water Comprehensive Plan

December 2018
Revised October 2019
Final Approval May 2020
SAMMAMISH PLATEAU
WATER AND SEWER DISTRICT

2018 Water Comprehensive Plan

December 2018
Revised October 2019
Final Adoption May 2020

CHS Engineers, LLC
12507 Bel-Red Road, Suite 101
Bellevue, WA 98004
425-637-3693
www.chsengineers.com
This page intentionally left blank.
SAMMAMISH PLATEAU WATER & SEWER DISTRICT
KING COUNTY, WASHINGTON

RESOLUTION NO. 4959

RESOLUTION OF THE BOARD OF COMMISSIONERS OF SAMMAMISH PLATEAU WATER AND SEWER DISTRICT, KING COUNTY, WASHINGTON, ADOPTING THE FINAL 2018 WATER COMPREHENSIVE PLAN WITH FINAL REVISIONS IN ACCORDANCE WITH RCW 57.16.010(7) AND WAC 246-290-100.

WHEREAS, the Sammamish Plateau Water and Sewer District ("District") is a municipal corporation providing water and sewer utility services pursuant to Title 57 of the Revised Code of Washington ("RCW"); and

WHEREAS, RCW 57.16.010(1) authorizes the District to adopt a general comprehensive water system plan, and the District has previously done so by the adoption of the 2018 Comprehensive Water System Plan on October 7, 2019 by Resolution No. 4901, (referred to as "the Final 2018 Plan"); and

WHEREAS, state law and administrative regulation, including WAC 246-290-100, require that the District's comprehensive water system plan be updated periodically; and

WHEREAS, the Water Comprehensive Plan has been amended at various times, and the District Board of Commissioners ("Board of Commissioners") adopted an updated and revised Draft Water Comprehensive Plan and Appendices dated December 2018 by Resolution No. 4851 for public distribution and comment on February 25, 2019 (the "2018 Plan"); and Board of Commissioners thereafter adopted a proposed Final 2018 Water Comprehensive Plan October 7, 2019 by Resolution No. 4901 ("Final 2018 Plan"); and

WHEREAS, in accordance with Resolution No. 4901, the Final 2018 Plan was submitted to the legislative authorities of King County, City of Sammamish and City of Issaquah and to appropriate state agencies, including the Washington State Department of Health, for review and comment by those jurisdictions and agencies as provided and required by law; and

WHEREAS, pursuant to RCW 57.16.010, the Washington State Department of Health has by letter dated April 23, 2020 approved the Final 2018 Plan identified as Submittal #19-0208, King County has approved the Final 2018 Plan by Ordinance #19069 dated March 24, 2020 signed March 28, 2020, City of Sammamish has approved the 2018 Plan by adoption of Resolution R2020-864 dated January 7, 2020, and the City of Issaquah has approved the 2018 Plan by provision of Local Government Consistency Review Checklist response dated June 11, 2019; and

WHEREAS, the 2018 Final Plan as approved by the appropriate state and local agencies are collectively referred to herein as the "Final 2018 Water Comprehensive Plan"; and
WHEREAS, based on a SEPA checklist prepared regarding the proposed adoption of the 2018 Plan as a non-project action, a SEPA Determination of Non-Significance ("DNS") was issued by John Krauss, District Manager and District Responsible SEPA Official, on February 19, 2019, and a SEPA Notice of Action was issued on April 1, 2019, in conformance with the District’s SEPA Resolution No. 3209; now, therefore,

BE IT RESOLVED, by the Board of Commissioners of Sammamish Plateau Water & Sewer District, King County, Washington, as follows:

1. The Board of Commissioners hereby adopts as findings the recitals to this Resolution set forth above.

2. The Final 2018 Water Comprehensive Plan with final revisions is approved and adopted as the District’s comprehensive water system plan effective the date set forth below.

ADOPTED by the Board of Commissioners of Sammamish Plateau Water and Sewer District, King County, Washington, at a regular open public meeting held on the 11th day of May 2020.

Individual Commissioner’s Vote on this Resolution:

<table>
<thead>
<tr>
<th>Approved:</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposed:</td>
<td></td>
</tr>
<tr>
<td>Abstained:</td>
<td></td>
</tr>
<tr>
<td>Absent:</td>
<td></td>
</tr>
</tbody>
</table>

Ryika Hooshangi, President and Commissioner

Lloyd Warren, Vice President and Commissioner

Mary Shustov, Secretary and Commissioner

Tom Harman, Commissioner

Mahbubul Islam, Commissioner

Resolution No. 4959
Acknowledgements

Acronyms and Abbreviations

Certificate of Engineers

Executive Summary

Chapter 1 Description of Water System

1.1 Ownership and Management

1.2 System Background

1.2.1 History of Water System Development and Growth

1.2.2 Geography

1.2.3 Neighboring/Adjacent Purveyors

1.2.4 Federal, State, and Local Regulations

1.3 Inventory of Existing Facilities

1.3.1 Plateau Zone

1.3.1.1 Source of Supply

1.3.1.2 Treatment

1.3.1.3 Storage

1.3.1.4 Transmission and Distribution Network

1.3.1.5 Pressure Zones

1.3.1.6 Booster Pump Stations

1.3.1.7 Pressure-Reducing Stations

1.3.1.8 Interties

1.3.1.9 Service Connections

1.3.2 Cascade View Zone

1.3.2.1 Source of Supply

1.3.2.2 Treatment

1.3.2.3 Storage

1.3.2.4 Transmission and Distribution Network

1.3.2.5 Pressure Zones

1.3.2.6 Booster Pump Stations

1.3.2.7 Pressure-Reducing Stations

1.3.2.8 Interties

1.3.2.9 Service Connections

1.4 Related Plans

2018 Water Comprehensive Plan
Sammamish Plateau Water and Sewer District
October 2019
1.5 Existing Service Area Characteristics.................................1-29
1.6 Future Service Area..1-31
1.7 Service Area Agreements..1-33
 1.7.1 Northeast Sammamish Sewer & Water District1-33
 1.7.2 Issaquah ..1-33
 1.7.3 Union Hill Water Association ..1-34
 1.7.4 Dawnbreaker Water Association1-34
 1.7.5 Overdale Water Association ..1-34
 1.7.6 Ames Lake Water Association ...1-34
 1.7.7 City of Redmond ...1-34
1.8 Service Area Policies ..1-34
 1.8.1 Wholesaling Water ...1-34
 1.8.2 Wheeling Water ...1-35
 1.8.3 Annexation ...1-35
 1.8.4 Direct Connection and Remote Systems1-35
 1.8.5 Design and Performance Standards1-38
 1.8.6 Surcharge for Outside Customers1-38
 1.8.7 Formation of Utility Local Improvement Districts1-38
 1.8.8 Urban Growth Area ...1-38
 1.8.9 Reimbursement (Latecomer) Agreements1-39
 1.8.10 Oversizing ..1-39
 1.8.11 Cross-Connection Control Program1-39
 1.8.12 System Extension ...1-39
 1.8.13 Drinking Water Quality ...1-40
1.9 Satellite Management Agencies ..1-41
1.10 Conditions of Service ..1-41
 1.10.1 District Responsibilities ...1-41
 1.10.2 Customer Responsibilities ...1-43
 1.10.3 Connection Fee Schedule ...1-43
 1.10.3.1 General Facility Charges ..1-44
 1.10.3.2 Local Facility (Mainline) Charges1-44
 1.10.3.3 Meter Installation/Drop Fees1-45
 1.10.3.4 Regional Capital Facility Charges1-45
 1.10.3.5 Installation Permit Fees ...1-45
 1.10.4 Meter and Materials Specifications1-45
 1.10.5 Consent Agreements for Inspection, Maintenance, and Repair Activities That May Disrupt Water Service ..1-46
 1.10.6 Cross-Connection Control Requirements1-46
 1.10.7 Latecomer Payback Provisions1-46
 1.10.8 Developer Extension Requirements, Design Standards, Financing Responsibilities ...1-46
1.11 Complaints ..1-46
Chapter 2 Basic Planning Data and Water Demand Forecasting

2.1 Current Population, Service Connections, Water Use, and Equivalent Residential Units 2-1
 2.1.1 Current Population ... 2-1
 2.1.2 Total Service Connections ... 2-1
 2.1.3 Water Use Data Collection ... 2-3
 2.1.4 Equivalent Residential Units ... 2-11

2.2Projected Land Use, Future Population, and Water Demand .. 2-14
 2.2.1 Projected Land Use ... 2-14
 2.2.2 Projected Population ... 2-14
 2.2.2.1 Near-term ERU Forecast ... 2-15
 2.2.2.2 Long-term ERU Forecast ... 2-17
 2.2.3 Water Demand Forecast ... 2-25

Chapter 3 System Analysis

3.1 Source Capacity Analysis .. 3-1
 3.1.1 Design Criteria ... 3-1
 3.1.2 Source Capacity Evaluation .. 3-1
 3.1.2.1 Plateau Zone ... 3-1
 3.1.2.2 Cascade View Zone ... 3-5

3.2 Storage Capacity Analysis .. 3-6
 3.2.1 Design Criteria ... 3-6
 3.2.1.1 Operating and Dead Storage Volumes 3-6
 3.2.1.2 Equalizing Volume .. 3-7
 3.2.1.3 Fire Flow Volume ... 3-7
 3.2.1.4 Standby Volume ... 3-7
 3.2.2 Storage Capacity Evaluation ... 3-8
 3.2.2.1 Plateau Zone Summary .. 3-9
 3.2.2.2 Cascade View Zone System-wide Summary 3-24

3.3 Distribution System Analysis .. 3-29
 3.3.1 Analysis Methodology ... 3-29
 3.3.2 System Components ... 3-29
 3.3.3 Water Demand Allocation .. 3-30
 3.3.4 Calibration ... 3-30
 3.3.5 Modeling Scenarios ... 3-30
 3.3.6 Peak Hour Analysis Results .. 3-32
 3.3.6.1 Plateau Zone ... 3-32
 3.3.6.2 Cascade View Zone ... 3-34
 3.3.7 Fire Flow Analysis Results .. 3-37
 3.3.7.1 Plateau Zone ... 3-37
 3.3.7.2 Cascade View Zone ... 3-44
 3.3.8 Redundancy Analysis ... 3-48
Chapter 4 Conservation, Supply Analysis, Water Rights, System Reliability, and Interties

4.1 Conservation Program
4.1.1 Conservation History
4.1.2 Conservation Requirements and Compliance Summary
4.1.3 Historical Conservation Program
 4.1.3.1 Measures
 4.1.3.2 Savings Achieved by Historical Program
4.1.4 Conservation Program for 2014-2019
 4.1.4.1 Goal
 4.1.4.2 Conservation Measures
 4.1.4.3 Estimated Savings and Budget
 4.1.4.4 Impact on Demand

4.2 Source of Supply Strategy

4.3 Water Rights Evaluation

4.4 Aquifer Storage and Recovery Program
 4.4.1 Overview
 4.4.2 Program Objectives
 4.4.3 Interpretation of Storage and ASR Program Success

4.5 Water System Reliability
 4.5.1 Source Reliability
 4.5.1.1 Plateau Zone
 4.5.1.2 Cascade View Zone
 4.5.2 Distribution System Reliability

4.6 Interties

Chapter 5 Source Water Protection

5.1 Overview
5.2 Susceptibility Assessment
5.3 Wellhead Protection Areas

5.4 Contaminant Source Inventory
 5.4.1 Inventory Approach
 5.4.2 Data Sources
 5.4.3 Inventory Results
 5.4.3.1 Lower Reid Infiltration Gallery
 5.4.3.2 Per- and Polyfluorinated Compound (PFAS) Plume
 5.4.4 Additional Potential Sources of Contamination

5.5 Notification
5.6 Contingency Plan
5.7 Spill Response
5.8 Regional Coordination
Chapter 6 Operation and Maintenance Program

6.1 Water System Management and Personnel 6-1

6.2 Certification, Training, and Membership in Professional Organizations ... 6-6

6.2.1 Training and Professional Organization Membership 6-7

6.3 System Operation and Control ... 6-8

6.3.1 Identification of Major System Components 6-8

6.3.1.1 Plateau Zone Components .. 6-24

6.3.1.2 Cascade View Zone Components 6-31

6.3.2 Routine System Operation and Preventative Maintenance 6-33

6.3.3 Chemicals, Equipment, Supplies, and Maintenance Contractors ... 6-34

6.4 Comprehensive Monitoring (Regulatory Compliance) Plan . 6-34

6.4.1 Introduction and Approach ... 6-34

6.4.2 System Overview .. 6-35

6.4.3 Drinking Water Regulatory Framework 6-35

6.4.4 Effective Drinking Water Regulations 6-36

6.4.5 Source and Treatment Regulations 6-38

6.4.5.1 Surface Water Treatment Rule 6-38

6.4.5.2 Groundwater Rule ... 6-39

6.4.5.3 Phase I, II, and V Rules (Inorganic & Organic Chemicals) ... 6-42

6.4.5.4 Arsenic Rule ... 6-49

6.4.5.5 Radionuclides Rule .. 6-50

6.4.5.6 Unregulated Contaminant Monitoring Rule 6-51

6.4.6 Distribution System Regulations 6-53

6.4.6.1 Total Coliform Rule ... 6-53

6.4.6.2 Stage 1 Disinfectant/Disinfection By-Products Rule 6-54

6.4.6.3 Stage 2 Disinfection By-Products Rule 6-55

6.4.6.4 Lead and Copper Rule ... 6-57

6.4.7 Other Regulations .. 6-60

6.4.7.1 Consumer Confidence Reports and Public Notification Rule ... 6-60

6.4.7.2 Operator Certification ... 6-61

6.4.8 Recently Promulgated and Anticipated Drinking Water Regulations ... 6-61

6.4.8.1 Unregulated Contaminant Monitoring Rule 4 6-62

6.4.8.2 Lead and Copper Rule Long Term Revisions 6-62

6.4.8.3 Perchlorate ... 6-65

6.4.9 Certified Laboratories Used for Sample Analyses 6-65

6.4.10 Response to Customer Inquiries and Complaints 6-66

6.4.11 Summary of Regulatory Status 6-66

6.4.11.1 Monitoring Plans ... 6-68

6.4.11.2 Bacteriological Monitoring Plan 6-69

6.4.11.3 Inorganic Chemical, Physical Contaminant, Organic Chemical, Radionuclide Monitoring Plans 6-82

6.4.11.4 Lead and Copper Monitoring Plan 6-82
6.5 Emergency Response Program .. 6-84
6.5.1 Emergency Response ... 6-84
6.5.2 Emergency Response Plan .. 6-85
6.5.3 Emergency Response Plan, Volume 1 6-86
 6.5.3.1 Chapter 1: Introduction ... 6-86
 6.5.3.2 Chapter 2: Emergency Preparedness: District Planning 6-86
 6.5.3.3 Chapter 3: Emergency Preparedness: Implementing District Planning ... 6-87
 6.5.3.4 Chapter 4: Emergency Preparedness: Response Organization ... 6-87
6.5.3.5 Chapter 5: Emergency Preparedness: Response Process .. 6-89
6.5.4 Emergency Response Plan, Volume 2: Response 6-90
6.5.5 Emergency Response Plan, Volume 3: Resource Manual 6-90
 Chapter 1 – COMMUNICATIONS AND RADIO
 Chapter 2 – FACILITY INFORMATION
 Chapter 3 – GENERATORS
 Chapter 4 – AGENCIES, CONTRACTORS, SUPPLIERS AND FUEL SUPPLIERS
 Chapter 5 – MEDICAL/HOSPITAL
 Chapter 6 – MUTUAL AID
6.5.6 Emergency Response Plan, Volume 4: Vulnerability Assessment 6-91
6.5.7 Emergency Response Plan, Volume 5: District Water Facilities 6-92
6.5.8 Emergency Response Plan, Volume 6: District Sewer Facilities 6-92
6.5.9 Seismic Resiliency .. 6-92
6.5.10 Coliform Monitoring Plan & Triggered Ground Water Monitoring Plan ... 6-93
6.6 Safety Procedures .. 6-93
6.7 Cross-Connection Control Program .. 6-96
6.8 Customer Complaint & Inquiry Response 6-100
6.9 Recordkeeping .. 6-103
6.10 Reporting ... 6-105
6.11 Operation and Maintenance Improvements 6-106
6.12 Water Shortage Response Plan .. 6-107

Chapter 7 Distribution Facilities Design and Construction Standards
7.1 Project Review Procedures .. 7-1
7.2 Policies and Requirements for Outside Parties 7-1
 7.2.1 Developer Extension Agreement 7-1
 7.2.2 Pipe Looping Requirements ... 7-3
 7.2.3 Fire Flow .. 7-3
 7.2.4 Other Requirements ... 7-3
7.3 Design Standards .. 7-4
 7.3.1 Water Service Pressure .. 7-4
 7.3.2 Pipeline Velocities ... 7-4
7.3.3 Pipelines .. 7-4
7.3.4 Storage Tanks ... 7-5
7.3.5 Booster Pumps ... 7-5
7.3.6 Pressure-Reducing Valve Stations 7-5
7.3.7 Valves ... 7-5
7.3.8 Hydrants .. 7-6

7.4 Construction Standards 7-6
7.4.1 Ductile-Iron Pipe ... 7-6
7.4.2 Polyvinyl Chloride Pipe 7-6
7.4.3 High-Density Polyethylene Pipe 7-7
7.4.4 Valves ... 7-7
7.4.5 Backflow Prevention Assemblies 7-8
7.4.6 Fire Hydrants ... 7-8
7.4.7 Pipe Laying ... 7-8
7.4.8 Connection to Existing Main 7-8
7.4.9 Water Service Connections 7-9
7.4.10 Fire Hydrant Installation 7-9

7.5 Construction Certification and Follow-Up Procedures 7-9
7.5.1 Hydrostatic Tests .. 7-9
7.5.2 Sterilization and Flushing of Water Mains 7-10
7.5.3 As-Builts .. 7-10
7.5.4 Notice of Completion 7-11

Chapter 8 Capital Plan
8.1 Development of CP 8-1
8.2 Planned Projects .. 8-2
 8.2.1 Combined Water and Sewer Projects 8-11
 8.2.2 General Water System 8-12
 8.2.3 Water Supply ... 8-13
 8.2.4 Booster Pumping 8-13
 8.2.5 Water Storage ... 8-14
 8.2.6 Water Distribution System 8-16
 8.2.6.1 Plateau Zone .. 8-16
 8.2.6.2 Cascade View Zone 8-29

Chapter 9 Financial Summary
9.1 Past Financial History 9-1
9.2 Review of the District’s Water Rates 9-4
9.3 Development of the Financial Analysis 9-6
 9.3.1 Revenues and Expenses 9-6
 9.3.1.1 Revenues ... 9-6
 9.3.1.2 Expenses ... 9-7
 9.3.2 Internal Sources of Funds 9-10
 9.3.3 External Sources of Funds 9-11
9.4 Water General Facilities Charge 9-12
Chapter 10 Implementation

10.1 Chapter 1: Description of Water System..10-1
 10.1.1 Implementation Considerations (Chapter 1)....................................10-1
 Regulations...10-1
 Service Area..10-2
 Service Provision...10-2

10.2 Chapter 2: Basic Planning Data and Water Demand Forecast......................10-2
 10.2.1 Implementation Considerations (Chapter 2)....................................10-3

10.3 Chapter 3: System Analysis...10-3
 10.3.1 Implementation Considerations (Chapter 3)....................................10-3

10.4 Chapter 4: Conservation Program, Supply Analysis, Water Rights, System Reliability and Interties...10-4
 10.4.1 Implementation Considerations (Chapter 4)....................................10-4
 Conservation Program...10-4

10.5 Chapter 5: Source Water Protection..10-5
 10.5.1 Implementation Considerations (Chapter 5)....................................10-5

10.6 Chapter 6: Operations and Maintenance Program...................................10-6
 10.6.1 Implementation Considerations (Chapter 6)....................................10-6
 Training and Management...10-6
 Water Quality Requirements..10-7
 Emergency Response, Safety and Cross-Connection Control Programs...10-8

10.7 Chapter 7: Distribution Facilities Design and Construction Standards...........10-9
 10.7.1 Implementation Considerations (Chapter 7)....................................10-9

10.8 Chapter 8: Capital Plan...10-9
 10.8.1 Implementation Considerations (Chapter 8)....................................10-9

10.9 Chapter 9: Finance Plan...10-10
 10.9.1 Implementation Considerations (Chapter 9)....................................10-10
 Rates ...10-10
 General Facility Charge..10-10
 Funding Capital Improvement Projects......................................10-11
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Sizes and Types of Meters by Customer Class</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>Multi-Family Units Per Connection</td>
<td>2-3</td>
</tr>
<tr>
<td>2-3</td>
<td>Summary of Historical Water Production and Consumption (2009-2016)</td>
<td>2-4</td>
</tr>
<tr>
<td>2-4</td>
<td>Historical Annual Water Production and Purchases by Source (2009-2016)</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>Historical Monthly Water Production and Purchases (2009-2016)</td>
<td>2-6</td>
</tr>
<tr>
<td>2-6</td>
<td>Historical Annual Water Consumption by Customer Classification (2009-2016)</td>
<td>2-8</td>
</tr>
<tr>
<td>2-7</td>
<td>Historical Bi-Monthly Retail Water Sales (2009-2016)</td>
<td>2-10</td>
</tr>
<tr>
<td>2-8</td>
<td>Equivalent Residential Units (ERUs) and Meter Size</td>
<td>2-12</td>
</tr>
<tr>
<td>2-9</td>
<td>Historical Equivalent Residential Unit (ERU) Analysis (2014-2016)</td>
<td>2-13</td>
</tr>
<tr>
<td>2-10</td>
<td>Summary of ERU Forecast by Jurisdiction (2017- Buildout)</td>
<td>2-16</td>
</tr>
<tr>
<td>2-11</td>
<td>Analysis of Projected Demographic City of Sammamish Growth Rates (Based on Comprehensive Plans)</td>
<td>2-19</td>
</tr>
<tr>
<td>2-12</td>
<td>Analysis of Projected Demographic City of Issaquah Growth Rates (Based on Comprehensive Plans)</td>
<td>2-20</td>
</tr>
<tr>
<td>2-13</td>
<td>Analysis of Projected Demographic Growth Rates (Based on PSRC Data)</td>
<td>2-22</td>
</tr>
<tr>
<td>2-14</td>
<td>Comparison of Demographic Growth Rates</td>
<td>2-23</td>
</tr>
<tr>
<td>2-15</td>
<td>ERU Forecast (2017-2037) by Service Zone and Customer Classification</td>
<td>2-24</td>
</tr>
<tr>
<td>2-16</td>
<td>Water Demand Forecast (2017-2037) by Service Zone and Customer Classification</td>
<td>2-26</td>
</tr>
<tr>
<td>2-17</td>
<td>Water Demand Forecast Summary Without and With Additional Efficiency</td>
<td>2-28</td>
</tr>
<tr>
<td>3-1</td>
<td>Evaluation of Source Adequacy for Plateau Zone (Summer Months, Peak Season)</td>
<td>3-2</td>
</tr>
<tr>
<td>3-2</td>
<td>Evaluation of Source Adequacy for Plateau Zone Groups (Summer Months, Peak Season)</td>
<td>3-3</td>
</tr>
<tr>
<td>3-3</td>
<td>Evaluation of Source Adequacy for Cascade View Zone</td>
<td>3-5</td>
</tr>
<tr>
<td>3-4</td>
<td>Summary of Plateau Zone Storage Capacity Analysis</td>
<td>3-10</td>
</tr>
<tr>
<td>3-5</td>
<td>Evaluation of Storage Adequacy for 700 Zone</td>
<td>3-13</td>
</tr>
<tr>
<td>3-6</td>
<td>Evaluation of Storage Adequacy for 650 Zone</td>
<td>3-15</td>
</tr>
<tr>
<td>3-7</td>
<td>Evaluation of Storage Adequacy for 297 Zone</td>
<td>3-17</td>
</tr>
<tr>
<td>3-8</td>
<td>Summary of Cascade View Zone Storage Capacity Analysis</td>
<td>3-24</td>
</tr>
<tr>
<td>3-9</td>
<td>Storage Tank Geometry and Utilization Summary</td>
<td>3-28</td>
</tr>
<tr>
<td>3-10</td>
<td>2037 Fire Flow Deficiencies – Plateau Zone</td>
<td>3-43</td>
</tr>
<tr>
<td>3-11</td>
<td>2037 Fire Flow Deficiencies – Cascade View Zone</td>
<td>3-47</td>
</tr>
<tr>
<td>4-1</td>
<td>Water Use Efficiency Rule Requirements and District Compliance</td>
<td>4-3</td>
</tr>
<tr>
<td>4-2</td>
<td>Historical Conservation Program</td>
<td>4-7</td>
</tr>
<tr>
<td>4-3</td>
<td>Single Family Rates (Effective January 1, 2019): Fixed Base Rates</td>
<td>4-13</td>
</tr>
<tr>
<td>4-4</td>
<td>Single Family Rates (Effective January 1, 2019): Increasing Block Consumption Rates</td>
<td>4-14</td>
</tr>
<tr>
<td>4-5</td>
<td>Rates for Multifamily Customer Classes (Effective January 1, 2019)</td>
<td>4-14</td>
</tr>
</tbody>
</table>
4-6 Rates for Public Institutional, Commercial and Industrial Classes (Effective January 1, 2019) ... 4-15
4-7 Rates for Irrigation Customer Classes (Effective January 1, 2019) ... 4-15
4-8 Annual Consumption for the years 1994-2017 (Includes all authorized billed and unbilled consumption 2006-2017) 4-23
4-9 Peak Summer Consumption for 1994-2017 (for the months of June, July, August and September) .. 4-26
4-10 2014-2019 Future Conservation Program ... 4-29
4-11 Savings and Cost Summary ... 4-36
4-12 Savings Schedule and Impact on Average Demand 4-44
4-13 Savings Schedule and Impact on Peak Season Demand 4-45
4-14 Water Rights Self-Assessment – Plateau Zone 4-50
4-15 Water Rights Self-Assessment – Cascade View Zone 4-53
4-16 ASR Injection Volume and Recovery Compared to Existing Water Rights 4-56

5-1 Summary of Water Well Data .. 5-5
5-2 List of Potential Contaminant Sources ... 5-7
5-3 Potential Source Contamination Notifications 5-20
5-4 Emergency Response Plan Emergency Responders 5-22

6-1 District Management ... 6-2
6-2 Current Water System Operations Full-Time Equivalents 6-5
6-3 Combined Water Operation Routine and Preventative Maintenance
 Staffing Level Required for Water Operators .. 6-6
6-4 Current Personnel - Water System Related Certifications 6-7
6-5 Major System Components – Supply Sources 6-8
6-6 Major System Components – Treatment Facilities 6-9
6-7 Major System Components – Storage Facilities 6-11
6-8 Major System Components – Water Distribution System 6-12
6-9 Major System Components – Booster Pump Stations 6-14
6-10 Major System Components – Pressure Reducing Stations 6-15
6-11 Major System Components – Control Valves 6-18
6-12 Major System Components - Additional Zone Valves 6-20
6-13 Major System Components – Interties ... 6-23
6-14 Applicable Safe Drinking Water Act Regulations 6-37
6-15 Inorganic Chemicals – Regulatory Levels and District Monitoring
 Results (2009 to 2016) .. 6-43
6-16 Synthetic Organic Chemicals - Regulatory Levels and District Monitoring Results (2009 to 2016) .. 6-44
6-17 Volatile Organic Chemicals – Regulatory Levels and District Monitoring Results (2009 to 2016) .. 6-47
6-18 Arsenic Rule – Regulatory Levels and District Monitoring Results
 (2009 to 2016) ... 6-50
6-19 Stage 1 D/DBP Rule – Regulatory Levels and District Monitoring
 Results (2009 to 2012) .. 6-55
6-20 Stage 2 D/DBP Rule – Regulatory Levels and District Monitoring Results (2013 to 2017)...6-57
6-21 Lead and Copper Rule Revisions, 2007...6-58
6-22 Lead and Copper – Regulatory Levels and District Monitoring Results (2010, 2013 and 2016)..6-60
6-23 Recently Promulgated and Anticipated Regulations Under the Safe Drinking Water Act...6-62
6-24 Summary of Applicable Regulations and Compliance Status............... 6-66
6-25 Monthly Bacteriological Monitoring Locations...6-69
6-26 Inorganic Chemical, Physical Contaminant, Organic Chemical, Radionuclide Monitoring Locations..6-82
6-27 Lead and Copper Monitoring Locations...6-83
6-28 Evaluation of Emergencies...6-86
6-29 Phases of Response..6-87
6-30 Workplace Hazards..6-95
6-31 Estimated Staff Time Required to Implement Cross-connection Control Program (1 FTE = 1,788 hours)...6-99
6-32 Customer Complaints and Inquiries..6-101
6-33 Record Keeping..6-104
6-34 Operation and Maintenance for System Growth....................................6-106

7-1 Service Area Governing Fire Guidelines...7-4

8-1 Capital Improvement Program (2018 – 2037)..8-4

9-1 Summary of Operating Financial History ($000s)..................................9-2
9-2 Current Water Rates (as of January 1, 2019)...9-5
9-3 Current Water GFCs and LFCs (as of July 17, 2018)............................9-6
9-4 Summary of Water Capital Projects ($000s)...9-9
9-5 Updated Water GFC Calculation..9-16
9-6 Summary of the Ten-Year Financial Plan ($000s).................................9-18
9-7 Water Rate Forecast...9-19

FIGURES
1-1 Service Area Boundaries..1-2
1-2 2018 District Organization Chart..1-3
1-3 District ERU History...1-5
1-4 Water System History..1-6
1-5 Topography..1-11
1-6 Adjacent Water Purveyors...1-12
1-7 Group B Groundwater Sources..1-13
1-8 Existing Facilities Plateau Zone..1-16
1-9 Plateau Zone Hydraulic Profile..1-17

2018 Water Comprehensive Plan xi October 2019 Sammamish Plateau Water and Sewer District
1-10 Fluoridation and Chlorination Areas.. 1-18
1-11 Existing Facilities Cascade View Zone.. 1-22
1-12 Cascade View Zone Hydraulic Profile... 1-23
1-13 Zoning.. 1-30
1-14 Annexation Areas.. 1-32

2-1 Historical Monthly Water Production and Purchases (2014 – 2016)........... 2-7
2-2 Average Water Consumption by Percent of Total (2014 – 2016)................. 2-9
2-3 Bi-Monthly Retail Water Sales ... 2-10
2-4 Bi-Monthly Retail Water Sales by Customer Class (2014 – 2016)............. 2-11
2-5 Zoning Classifications Based on Area... 2-14
2-6 Future Demand Development Logic... 2-18

3-1 Storage Components... 3-6
3-2 3.0 MG Tank - 700 Zone Group... 3-19
3-3 7.0 MG Tank - 650 Zone Group... 3-20
3-4 2.0 MG Tank – 650 Zone Group... 3-21
3-5 Section 36E and 36W Tanks (4.0 MG Each) – 650 Zone Group.................. 3-22
3-6 297 Tank (2.25 MG) – 297 Zone Group... 3-23
3-7 Well 12 Tank (0.60 MG) – Cascade View Zone Group................................. 3-26
3-8 Well 13R Tank (0.28 MG) – Cascade View Zone Group.............................. 3-27
3-9 2037 Peak Hour Pressure – Plateau Zone... 3-35
3-10 2037 Peak Hour Pressure – Cascade View Zone.. 3-36
3-11 Fire Flow Targets... 3-40
3-12 2037 Fire Flow Deficiencies – Plateau Zone... 3-41
3-13 Fire Flow Improvements – Plateau Zone... 3-42
3-14 2037 Fire Flow Deficiencies – Cascade View Zone..................................... 3-45
3-15 Fire Flow Improvements – Cascade View Zone.. 3-46
3-16 Redundancy Projects – Plateau Zone.. 3-50
3-17 Redundancy Projects – Cascade View Zone... 3-51

4-1 Number of Customers (as ERUs) Compared to Annual Consumption
1994-2017... 4-25
4-2 Number of Customers (as ERUs) Compared to Peak Consumption
(June-September) 1994-2017... 4-27
4-3 Savings by Sector (annual average)... 4-40
4-4 Savings by Sector (peak season)... 4-40
4-5 Indoor vs. Outdoor Savings (annual average).. 4-41
4-6 Indoor vs. Outdoor Savings (peak season).. 4-41
4-7 Hardware vs. Behavior Savings (annual average)... 4-42
4-8 Hardware vs. Behavior Savings (peak season).. 4-42

5-1 Inventory of Potential Contaminant Sources.. 5-13
5-2 Inventory of Potential Contaminant Sources (Wells 7, 8, 9)...................... 5-14
5-3 Lower Issaquah Valley PFAS Characterization Exploration Areas............. 5-19

6-1 2018 District Organizational Chart.. 6-3
6-2 Sampling Stations by Week ..6-81
6-3 Sammamish Plateau Water Incident Command System Organization.....6-89
8-1 CIP - Pipe Projects - Plateau Zone..8-7
8-2 CIP - Pipe Projects - Cascade View Zone...8-8
8-3 CIP – Other Projects – Plateau Zone..8-9
8-4 CIP – Other Projects – Cascade View Zone.......................................8-10
APPENDICES

Appendix

A Water Facilities Inventory
B History of Moratoriums and Allocations, and Group B Water Systems in Future RWSA
C Well Data Sheets, 2008-2016 Water Production
D Intertie and Interagency Agreements
E Future Water Connection Agreement
F Design Standards
G District Resolutions (GFCs, LFCs, ULIDs)
H Reimbursement Agreement
I Developer Extension Agreement
J Water Quality Monitoring
K Application for Water Service
L Cross-Connection Control Program
M Hydraulic Model Development and Calibration
N Cascade WUE Goal and Reclaimed Water Analysis
O Well Susceptibility Forms
P Wellhead Protection Area Delineation Update
Q Spill Incident Response Plan
R Operation and Maintenance Program Details
S Water Shortage Response Plan
T Financial Summary Appendix
U SEPA Checklist
V Agency Approvals & Draft Plan Comments and Responses
Acknowledgements

The Sammamish Plateau Water and Sewer District Board of Commissioners, staff, and their consultants have played an integral part in preparing this document. Their invaluable assistance and contributions to all elements presented herein have shaped this document to reflect the values of the community and the role of the region as the District prepares to meet the upcoming needs of the water service area. Thanks and appreciation are extended to the following commissioners, staff, and consultants.

Sammamish Plateau Water and Sewer District

Commissioners
Lloyd Warren, President
Mahbubul Islam, Vice President
Mary Shustov, Secretary
Tom Harman, Commissioner
Ryika Hooshangi, Commissioner

Staff
Jay Krauss, General Manager
Jay Regenstreif
Andy Tuchscherer
John Anderson
Angel Barton
Kyle Wong
Janet Sailer
Kevin DeRouen

CHS Engineers, LLC
Rodney Langer

CDM Smith, Inc.
Scott Coffey

Murraysmith, Inc.
David Stangel
Michele Cusick

FCS GROUP
Chris Gonzales

Inslee, Best, Doezie & Ryder, P.S.
John Milne
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 Plan</td>
<td>2010 Water Comprehensive Plan</td>
</tr>
<tr>
<td>2012 Plan Amendment</td>
<td>2012 Water Comprehensive Plan Amendment</td>
</tr>
<tr>
<td>AC</td>
<td>asbestos concrete</td>
</tr>
<tr>
<td>ac-ft</td>
<td>acre-feet</td>
</tr>
<tr>
<td>ADD</td>
<td>average day demand</td>
</tr>
<tr>
<td>af/yr</td>
<td>acre-foot per year</td>
</tr>
<tr>
<td>AMCL</td>
<td>alternative maximum contaminant levels</td>
</tr>
<tr>
<td>APWA</td>
<td>American Public Works Association</td>
</tr>
<tr>
<td>ASR</td>
<td>aquifer storage and recovery</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWWA</td>
<td>American Water Works Association</td>
</tr>
<tr>
<td>BIP</td>
<td>Cascade Bellevue-Issaquah Pipeline</td>
</tr>
<tr>
<td>Board</td>
<td>Board of Commissioners</td>
</tr>
<tr>
<td>CARA</td>
<td>Critical Aquifer Recharge Area</td>
</tr>
<tr>
<td>Cascade</td>
<td>Cascade Water Alliance</td>
</tr>
<tr>
<td>CCCP</td>
<td>Cross-Connection Control Program</td>
</tr>
<tr>
<td>ccf</td>
<td>100 cubic feet</td>
</tr>
<tr>
<td>CCR</td>
<td>Consumer Confidence Report</td>
</tr>
<tr>
<td>cf</td>
<td>cubic feet</td>
</tr>
<tr>
<td>CIP</td>
<td>Capital Improvement Project</td>
</tr>
<tr>
<td>CP</td>
<td>Capital Plan</td>
</tr>
<tr>
<td>CPA</td>
<td>Conservation potential assessment</td>
</tr>
<tr>
<td>CU</td>
<td>copper</td>
</tr>
<tr>
<td>D/DBP</td>
<td>Stage 1 Disinfectants/Disinfection By-Products</td>
</tr>
<tr>
<td>DEA</td>
<td>Developer Extension Agreement</td>
</tr>
<tr>
<td>DI</td>
<td>ductile iron</td>
</tr>
<tr>
<td>District</td>
<td>Sammamish Plateau Water and Sewer District</td>
</tr>
<tr>
<td>DOH</td>
<td>Washington State Department of Health</td>
</tr>
<tr>
<td>DU</td>
<td>dwelling units</td>
</tr>
<tr>
<td>DWSRF</td>
<td>Drinking Water State Revolving Fund</td>
</tr>
<tr>
<td>Ecology</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>EKCCWSP</td>
<td>East King County Coordinated Water System Plan</td>
</tr>
<tr>
<td>EOC</td>
<td>Emergency Operations Center</td>
</tr>
<tr>
<td>ERP</td>
<td>Emergency Response Plan</td>
</tr>
<tr>
<td>ERU</td>
<td>Equivalent Residential Unit</td>
</tr>
<tr>
<td>ESWTHER</td>
<td>Enhanced Surface Water Treatment Rule</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>F/SID</td>
<td>Washington State Department of Ecology’s Facility/Site Identification System</td>
</tr>
<tr>
<td>FAC</td>
<td>Federal Advisory Committee</td>
</tr>
<tr>
<td>fps</td>
<td>feet per second</td>
</tr>
</tbody>
</table>
ft feet
FTE full time equivalents
FWSA Future Water Service Area
GFC general facility charge
GIS Geographical Information Services
gpd gallons per day
gpf gallons per flush
gpm gallons per minute
GWR Groundwater Rule
HAA haloacetic acid

HDPE high-density polyethylene
HGL hydraulic grade line
HPC heterotrophic plate count
ICI Institutional, Commercial and Industrial
IDSE Initial Distribution System Evaluation
IBC International Building Code
IFC International Fire Code
IOC inorganic compound
ISO Insurance Services Office
IT Information Technology

KCFD King County Fire District
KCWD King County Water District
LCR Lead and Copper Rule
LIDs Local Improvement Districts
LIVA Lower Issaquah Valley Aquifer
LRAA location-specific running annual average
LRIG Issaquah Highlands Lower Reid Infiltration Gallery
MCL maximum contaminant levels
MDD maximum day demand
MF Multi-Family

MG million gallons
mg/L milligrams per liter
μg/L micrograms per liter
mgd million gallons per day
MMM multimedia mitigation
MPD Master Planned Development
MRDLs Residual Disinfectant Levels
NESSWD Northeast Sammamish Sewer & Water District
NIMS National Incident Management System
NOM natural organic matter

O&M Operations and Maintenance
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIT</td>
<td>Operators-In-Training</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Health and Safety Administration</td>
</tr>
<tr>
<td>PAA</td>
<td>Potential Annexation Areas</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PAS</td>
<td>Plateau Aquifer System</td>
</tr>
<tr>
<td>pCi/L</td>
<td>picocuries per liter</td>
</tr>
<tr>
<td>PFAS</td>
<td>Per- and Polyfluoroalkyl Substances</td>
</tr>
<tr>
<td>PFOS</td>
<td>perfluorooctanesulfonic acid</td>
</tr>
<tr>
<td>PFOA</td>
<td>perfluorooctanoic acid</td>
</tr>
<tr>
<td>PHD</td>
<td>peak hour demand</td>
</tr>
<tr>
<td>Plan</td>
<td>Water Comprehensive Plan</td>
</tr>
<tr>
<td>PNR</td>
<td>Public Notification Rule</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protection Equipment</td>
</tr>
<tr>
<td>PPHH</td>
<td>persons per household</td>
</tr>
<tr>
<td>PRV</td>
<td>pressure reducing valve</td>
</tr>
<tr>
<td>PSE</td>
<td>Puget Sound Energy</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PSRC</td>
<td>Puget Sound Regional Council</td>
</tr>
<tr>
<td>PVC</td>
<td>polyvinyl-chloride</td>
</tr>
<tr>
<td>PWS</td>
<td>Public Water System</td>
</tr>
<tr>
<td>PWTF</td>
<td>Public Works Trust Fund</td>
</tr>
<tr>
<td>Qa</td>
<td>annual quantity</td>
</tr>
<tr>
<td>Qi</td>
<td>instantaneous quantity</td>
</tr>
<tr>
<td>RCFC</td>
<td>Regional Capital Facility Charge</td>
</tr>
<tr>
<td>RCW</td>
<td>Revised Code of Washington</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SDWA</td>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>SEPA</td>
<td>State Environmental Policy Act</td>
</tr>
<tr>
<td>SMA</td>
<td>Satellite Management Agencies</td>
</tr>
<tr>
<td>SMP</td>
<td>Standard Monitoring Program</td>
</tr>
<tr>
<td>SOC</td>
<td>synthetic organic compounds</td>
</tr>
<tr>
<td>SPU</td>
<td>Seattle Public Utilities</td>
</tr>
<tr>
<td>SSMA</td>
<td>Satellite System Management Agency</td>
</tr>
<tr>
<td>SSS</td>
<td>System-Specific Study</td>
</tr>
<tr>
<td>SVAR</td>
<td>Seismic Vulnerability Assessment Report</td>
</tr>
<tr>
<td>SWTR</td>
<td>Surface Water Treatment Rule</td>
</tr>
<tr>
<td>TAZ</td>
<td>Traffic Analysis Zone</td>
</tr>
<tr>
<td>TCR</td>
<td>Total Coliform Rule</td>
</tr>
<tr>
<td>TOT</td>
<td>Time of Travel</td>
</tr>
<tr>
<td>TSP</td>
<td>Cascade Water Alliance Transmission and Supply Plan</td>
</tr>
<tr>
<td>TTHM</td>
<td>total trihalomethanes</td>
</tr>
<tr>
<td>UCMR</td>
<td>Unregulated Contaminant Monitoring Rule</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>UGA</td>
<td>Urban Growth Area</td>
</tr>
<tr>
<td>UHWA</td>
<td>Union Hill Water Association</td>
</tr>
<tr>
<td>UIC</td>
<td>Underground Injection Control</td>
</tr>
<tr>
<td>ULIDs</td>
<td>Utility Local Improvement Districts</td>
</tr>
<tr>
<td>UPC</td>
<td>Uniform Plumbing Code</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>VAS</td>
<td>Valley Aquifer System</td>
</tr>
<tr>
<td>VOCs</td>
<td>volatile organic compounds</td>
</tr>
<tr>
<td>WAC</td>
<td>Washington Administrative Code</td>
</tr>
<tr>
<td>WASWD</td>
<td>Washington Association of Sewer and Water Districts</td>
</tr>
<tr>
<td>WFI</td>
<td>Water facilities inventory</td>
</tr>
<tr>
<td>WHPA</td>
<td>Wellhead protection area</td>
</tr>
<tr>
<td>WHPP</td>
<td>Wellhead protection program</td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington State Department of Transportation</td>
</tr>
<tr>
<td>WSP</td>
<td>Waster System Plan</td>
</tr>
<tr>
<td>WSRP</td>
<td>Water Shortage Response Plan</td>
</tr>
<tr>
<td>WUCC</td>
<td>East King County Water Utility Coordinating Committee</td>
</tr>
<tr>
<td>WUE Rule</td>
<td>Water Use Efficiency Rule</td>
</tr>
</tbody>
</table>
2018 WATER COMPREHENSIVE PLAN

SAMMAMISH PLATEAU
WATER AND SEWER DISTRICT

December 2018
Revised October 2019

CHS ENGINEERS, LLC
Rodney Langer, P.E.
Project Manager
2018 WATER COMPREHENSIVE PLAN

SAMMAMISH PLATEAU
WATER AND SEWER DISTRICT

December 2018
Revised October 2019

Murraysmith, Inc.
David Stangel, P.E.

Michele Cusick
Distribution System Hydraulic Modeling
2018 WATER COMPREHENSIVE PLAN

SAMMAMISH PLATEAU
WATER AND SEWER DISTRICT

December 2018
Revised October 2019

CDM Smith, Inc.
Scott Coffey, LHG
Groundwater Supply

State of Washington
Licensed Geologist

Scott E. Coffey
This page intentionally left blank.
This page intentionally left blank.
Water Comprehensive Plan

Executive Summary

The Sammamish Plateau Water and Sewer District (District) has prepared this Water Comprehensive Plan (Plan) as a road map to guide the District into the future and ensure that it continues to provide high-quality water service to the customers in its water service area. The Plan has been prepared in accordance with the Washington State Department of Health regulations as presented in WAC 246-290-100.

The District, governed by a five-person Board of Commissioners, has been supplying drinking water to its customers on the Sammamish Plateau since 1948. The District’s water service area is composed of two distinct areas, designated as the Plateau Zone and the Cascade View Zone. The system includes a total of 12 wells, two connections to the Cascade Water Alliance’s regional supply, eight storage tanks, and more than 295 miles of transmission and distribution pipelines, and currently serves more than 60,000 people. The District’s service area boundary has evolved as a function of growth and reflects hydraulic and topographical constraints. It is not coincident with political boundaries.

There have been several changes from the federal to the local level regulations since the District’s last Water Comprehensive Plan was prepared in 2010 (with an amendment in 2012) that impact the comprehensive planning process. The District has completed several programmatic initiatives in support of actively improving its management, planning, customer service and operations missions. Notable changes and new programs and achievements are highlighted in the following sections and detailed in the following chapters.

Two particularly notable advances include the implementation of Advanced Metering Infrastructure, discussed further under Water Use Efficiency, and development and adoption of an Asset Management Plan, discussed further under Capital Plan.
Policies

In accordance with the guidance provided in the Growth Management Act, this Plan is designed to be consistent with other applicable City and County plans. The District has policies that outline its approach to provision of service within its Retail Service Area, consistent with “duty-to-serve” requirements established by the State. The District’s service area boundary is independent of political boundaries.

Since adoption of the last Plan, the District has modified its policies for meter requirements for certain public-institutional developments. In addition policies were changed to allow new Group B systems in areas of the District’s future service area where direct District service is not readily available. This would be particularly applicable outside of the Retail Service Area.

The Board also adopted a formal Drinking Water Quality Policy statement addressing drinking water standards and groundwater and aquifer protection.

Demand Forecast

A primary element of developing an effective water system plan is the ability to forecast future demands on the system. The District is not a land use agency, and therefore must plan to meet the water demands that will result from land use and zoning designations established by King County and the Cities of Issaquah and Sammamish. Long-term (20-year and buildout) forecasts were prepared using District data, zoning designations, current development activity, population and housing unit growth projections developed by the PSRC and estimated future water conservation savings.

Recent updates used in this Plan include the 2015 update of the Puget Sound Regional Council (PSRC) long-range population and housing growth forecast for the region, the 2015 update to the City of Sammamish Comprehensive Plan, and the 2017 City of Issaquah update to its Comprehensive Plan. The updated growth forecasts have been prepared following a significant recession and reset the long-range growth forecast.
Average day water demands in the District’s service area are projected to reach 5.99 million gallons per day (mgd) by 2027, and 6.1 mgd by 2037. Maximum day demand is forecast to reach 12.7 mgd by 2027 and 13.0 mgd by 2037.

As evident in the growth trend line, PSRC growth forecasts anticipate a period of very slow population and housing growth beginning in about 10 years, with increasing growth rates late in the 20-year planning period. However, since several variables influence growth and water use, the population and water demand forecasts will be periodically reassessed by the District.

Transmission, Distribution, and Storage Analyses

Transmission, distribution, and storage analyses were conducted through the development of an extensive hydraulic model and supporting calculations of capacity versus forecast demand. In 2016 the District completed a project to comprehensively update and calibrate the distribution system hydraulic model. The update included inputs from the District’s geographic information system (GIS) asset inventory, updated pump curves, well production data and customer consumption from billing records. Preliminary model results were compared to data collected during field tests conducted in June, July and October 2016. Forty-five locations were used for field data collection. Field testing focused on measurement of static pressure, time and date at a hydrant followed by opening a nearby hydrant for testing under demand conditions. The model was then calibrated to achieve a high level of accuracy for nearly all conditions.

The hydraulic model evaluated current and future water requirements, analyzed present facilities, and anticipated the impact of future demand increases. The analysis indicated that existing source and storage facilities are sufficient to meet needs through the 20-year planning period (i.e. to 2037).

While most of the District’s transmission and distribution systems are adequate, projects were identified for some areas, including increases in size or enhancement with looping to meet fire flow requirements and for provision of service to all portions of the District’s service area.

In addition to system requirements for normal operations, the District also completed a redundancy analysis to identify the criticality of system facilities, and identified solutions to improve the overall redundancy of the system. Additionally, a Seismic Vulnerability
Assessment Report, completed in 2014, and a follow-up 2017 Seismic Pipeline Study recommended an additional project to enhance the District’s system resiliency.

Water Use Efficiency

The District understands how important it is to conserve water and to make the best use of water resources. In 2013 the Cascade Water Alliance (CWA) adopted a Water Use Efficiency (WUE) program for the period 2014-2019 on behalf of its members. This included an aggregated goal for its seven members of a “…cumulative drinking water savings of 0.6 million gallons per day on an annual basis, and 1.0 million gallons per day on a peak season (June-September) basis by 2020.” Conservation within the District’s system will be achieved by implementation of activities provided by CWA and additional measures administered directly by the District. Presently planned efforts are forecast to reduce District water use forecast for year 2037 by 0.26 mgd or 4.3 percent for the average day and 0.5 mgd or 3.8 percent for the maximum day.

Service meters are an essential component of conservation programs as they provide feedback to customers on their water use, and provide the basis for financial incentives for individual customers. Starting in 2016 the District significantly improved the potential for customers to monitor and manage their water consumption with implementation of an Advanced Metering Infrastructure (AMI) system. The District continues to identify ways to utilize the additional information available for the District and for each customer. The additional detail available, rather than water use readings bimonthly, will support future planning efforts, water use efficiency evaluations and programs, hydraulic modeling, and timelier leak detection for customers.

Water Resources

The District’s intends to continue using its existing groundwater wells as the primary source of supply into the future. These sources are supplemented by water obtained from two connections to the CWA regional supply.

The District has a long-term interest to develop aquifer storage and recovery (ASR) as an element of its water supply strategy, The District’s efforts to secure permits to implement ASR have stalled due to reluctance by the State Department of Ecology (DOE) to issue the necessary approvals and recovery rights, in context of comments by third-parties and the very complex analysis desired to address all stakeholders’ concerns and interests.

Water quality in the aquifer continues to be an area where the District must be vigilant. The District successfully worked with the City of Issaquah to avoid risk of contamination of District groundwater supply in the Issaquah Valley aquifer near the District’s Well 9. The District provided funding to allow the City to abandon the Lower Reid Infiltration Gallery in 2014 and manage the stormwater discharge in an area outside a wellhead protection area. More recently, detection of minute amounts of per- and polyfluorinated
substances (PFASs), well below the US EPA Health Advisory Limits, in two wells and uncertainty over changes in level of contamination and further development of the understanding of health impacts and potential regulations has prompted more specific review of use of those wells for supply. To assist in the understanding of this situation, the District updated its Issaquah Valley groundwater model in 2016. The District then developed a monitoring and response plan. Alternatives to address this new constraint include addition of treatment, if necessary, and/or increased reliance on the regional water supply system.

Water Operations Regulatory Requirements

The District’s water supply and monitoring programs comply with current drinking water regulations. The District has complied with new regulations since the last Plan, and continually looks to the future to anticipate upcoming regulations and how they might affect the utility and its operations, and most importantly, the quality of water provided to its customers. New and updated District programs include the following.

- The Revised Total Coliform Rule/Distribution System Rule took effect in 2016. The revised rule placed increased emphasis on evaluation of water samples for presence of total coliform, fecal coliform and *E. coli*, and consideration of how to respond following detection of the presence of each. In 2017 the District updated its Coliform Monitoring Plan and developed the associated Triggered Groundwater Monitoring Plan. The Coliform Monitoring Plan includes two tiers of assessment in response to potential unsatisfactory quality results, and an *E. coli* response plan.

- The District collected the required Unregulated Contaminant Monitoring Rule 3 (UCMR3) data from 2013 to 2015. As part of the UCMR 3 monitoring program the District detected PFASs in the supply from District Wells 7 and 8 in 2015. Minute quantities of the contaminants were detected below the survey’s minimum reporting level and well below the health advisory level. The City of Issaquah detected these compounds at levels above the health advisory levels in their wells about 1,600 feet away from District wells 7 and 8. The presence of this class of contaminants in the District’s water supply has prompted more detailed evaluation and consideration of measures to assure delivery of a safe water supply. Emergence of PFASs as contaminants of concern, including refinement of the health advisory impacts indicates there is potential for associated future water quality regulations.

- In 2017 the fourth Unregulated Contaminants Monitoring Rule (UCMR 4) identified 30 additional chemical and biological contaminant parameters to be included in the District’s water quality monitoring program. The District will conduct that monitoring beginning in 2019. There is anticipated continued participation in the UCMR monitoring program including phases anticipated beyond UCMR 4.

- The City of Flint changed its source of water supply and, with insufficient treatment, lead leached from lead water pipes into the local drinking water supply. This exposed
customers to lead contamination. EPA is considering long-term revisions to the federal Lead and Copper Rule, with a final rule anticipated in 2020. The District also anticipates designation of a national primary drinking water regulation for Perchlorate in the near future.

Capital Plan

Starting in 2016, the District established the practice of preparing a biennial Capital Plan, as a programmatic approach for near-term implementation of capital improvement projects, in the context of operational needs, the most recent Water Comprehensive Plan and Wastewater Comprehensive Plan, collaboration opportunities with local governments, development and system extension activity and the Asset Management (AM) Plan.

Also in 2016, through an intensive effort by all District staff and management, with support of the Commissioners, the District developed an AM Plan for its water and sewer system assets. The AM Plan addresses:

- The current state or condition of the District’s assets.
- Asset performance needed to deliver our desired level of service.
- Which assets are critical to sustained performance and service delivery.
- The minimum life-cycle costs for the assets relied on to provide service.
- The best long-term funding strategy to operate and renew assets.

The AM Plan identified 45,000 water system assets with a then-current replacement value estimated to be $584 million. Eighty-nine percent of the water system assets were determined to be in “good” to “very good” condition. This is due to the District’s historic and ongoing efforts to maintain the system and due to the relatively young age of many of the assets. The findings of the AM Plan support long-range financial planning for maintenance and eventual replacement of assets as they reach the end of their life cycle. Prudent planning for future needs will avoid the need for significant unforeseen increases in rates and connection charges.

The current biennial District Capital Plan was completed for 2018-2019, with consideration of projects through 2023. That plan was a significant resource for identification of projects for the early years of the 10-year capital plan presented in this Plan. The Plan contains the District’s Capital Plan (CP) that has been developed to guide the growth of the utility’s water system through the year 2037 and beyond. Included in the ten-year CP are:

- Water system share of combined water and sewer system general projects (e.g. office and administration facilities and programs, shared equipment, etc.)
- General water system projects or programs (e.g. completion of AMI project, Smart Water programs, vehicles and equipment, studies, etc.)
- Water supply and treatment improvement projects
- Booster pump station upgrade projects
• Storage safety and coating improvements, and a booster pump station project to utilize more existing capacity
• Transmission main upgrades or extensions
• Fire flow improvements in the transmission and distribution system
• Redundancy piping and pressure reducing valve projects

The CP also includes identification of several projects in progress.

Capital Plan Summary (Ten-Year)

<table>
<thead>
<tr>
<th>Description</th>
<th>2018 to 2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Share of Combined Projects</td>
<td>$3,146,905</td>
</tr>
<tr>
<td>General Water System</td>
<td>$2,382,143</td>
</tr>
<tr>
<td>Supply</td>
<td>$5,833,000</td>
</tr>
<tr>
<td>Booster Pumping</td>
<td>$41,781</td>
</tr>
<tr>
<td>Storage</td>
<td>$9,656,386</td>
</tr>
<tr>
<td>Mains – Transmission and General</td>
<td>$3,875,175</td>
</tr>
<tr>
<td>Mains – Fire Flow Deficiency</td>
<td>$7,027,320</td>
</tr>
<tr>
<td>Mains - Redundancy</td>
<td>$13,882,620</td>
</tr>
<tr>
<td>Mains – Projects in Progress</td>
<td>$10,962,230</td>
</tr>
<tr>
<td>Total</td>
<td>$56,807,560</td>
</tr>
</tbody>
</table>

Financial Evaluation

The District is in excellent financial health, and the financial plan presented herein verifies that the District can continue meeting all financial requirements. Revenue adjustments will be necessary to fund capital improvement projects outlined in the CP. Through this planning process the District has determined that the District’s Water General Facility Charges (GFCs) are adequate to recover an equitable share of system costs from growth. The financial plan review is based on assumptions that may change over time. The District reviews financial needs as part of an annual budget process, with annual rate analyses that provide the basis for actual revenue adjustments.
This page intentionally left blank.